Sains Malaysiana 54(8)(2025): 1945-1956

http://doi.org/10.17576/jsm-2025-5408-06

 

Pembangunan Parameter Pengesanan Bahan Pencemar dan Aplikasi Pemberitahuan melalui Kemudahan Internet Perkara (IoT) untuk Sensor Elektrokimia Mikrob

(Development of Pollutant Detection Parameters and Notification Applications through Internet of Things (IoT) Facilities for Microbial Electrochemical Sensors)

 

YASHAWINI PHRIYA RAUICHANDRAN1, RYAN YOW ZHONG YEO1, MUHAMMAD FARHAN HIL ME1, WEI LUN ANG1,2, MIMI HANI ABU BAKAR1, KEE SHYUAN LOH1, MANAL ISMAIL1,2, MOHD NUR IKHMAL SALEHMIN3, BEE CHIN KHOR4 & SWEE SU LIM1,*

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3National Nanotechnology Center (NNC), Ministry of Science, Technology, and Innovation (MOSTI), Precint 1, 62000, Putrajaya, Malaysia

4Indah Water Research Centre (IWRC), Indah Water Konsortium Sdn. Bhd. Lot 3938, Jalan Chan Chin Mooi, Titiwangsa, 53200 Kuala Lumpur, Malaysia

 

Diserahkan: 26 November 2024/Diterima: 23 Jun 2025

 

Abstrak

Penyelidikan ini memfokuskan pada pembangunan dan pengesahan biosensor untuk pemantauan kualiti air yang cekap melalui pengesanan automatik isyarat ketidakpatuhan. Biosensor ini menggunakan sistem elektrokimia mikrob yang maju dengan sokongan PicoLog Cloud, yang mengumpul data, menganalisis trend dan menghantar pemberitahuan kepada pengguna melalui SMS atau emel sekiranya terdapat ketidakpatuhan. Model matematik telah dibangunkan untuk meningkatkan ketepatan pengesanan dengan mengenal pasti Kadar Perubahan (RoC) isyarat biosensor sebagai parameter utama. Model ini menetapkan ambang ±30 mA/min yang telah disahkan melalui uji kaji makmal terkawal. Sensitiviti biosensor ini dapat dibuktikan melalui pengesanan output arus elektrik (50-300 µA) dengan penurunan ketara pada 0 µA pada kepekatan 100 mg/L 4-nitrofenol. Sistem ini berjaya mengesan lonjakan isyarat yang ketara akibat pengenalan medium baharu dan membezakannya daripada gangguan persekitaran seperti gangguan elektrik atau gelembung udara terperangkap. Analisis komuniti mikrob menunjukkan kelimpahan dominan Proteobacteria (34%), khususnya Alphaproteobacteria dan Gammaproteobacteria yang menyokong keadaan anaerobik yang diperlukan oleh Desulfobacterota (kurang daripada 10%). Walaupun kelimpahannya lebih rendah, Desulfobacterota memainkan peranan penting dalam penjanaan arus, menonjolkan hubungan simbiotik antara spesies mikrob untuk mengekalkan fungsi dan kecekapan biosensor. Penemuan ini menegaskan kemampuan biosensor untuk menyediakan pemantauan masa nyata dan pengesanan awal, mengurangkan kebergantungan pada pensampelan dan analisis manual. Inovasi ini menawarkan penyelesaian mampan untuk loji rawatan air sisa dan aplikasi pemantauan alam sekitar. Integrasi model matematik dengan pemahaman mikrob meningkatkan kemampuan biosensor, membolehkan interpretasi isyarat yang tepat dan operasi yang boleh dipercayai. Kajian ini membuktikan potensi gabungan elektrokimia mikrob dan sistem awan automatik untuk penyelesaian pemantauan kualiti air yang berskala dan berimpak tinggi.

Kata kunci: Biosensor elektrokimia mikrob; model matematik; pemantauan kualiti air; pengesanan masa nyata; sistem pemberitahuan automatik

 

Abstract

This study focuses on developing and validating a biosensor for efficient water quality monitoring through automatic detection of non-compliance signals. The biosensor employs an advanced microbial electrochemical system supported by PicoLog Cloud, which collects data, analyzes trends, and sends notifications to users via SMS or email in the event of non-compliance. A mathematical model was developed to enhance detection accuracy, identifying the Rate of Change (RoC) of the biosensor signal as a key parameter. The model defines a threshold of ±30 mA/min, validated through controlled laboratory experiments. The biosensor’s sensitivity was confirmed by the detection of current outputs (50-300 µA), with significant drop to 0 µA at 100 mg/L of 4-nitrophenol. The system successfully detected significant signal spikes caused by the introduction of new media and differentiated these from environmental noise, such as electrical interference or trapped air bubbles. Microbial community analysis showed a dominant abundance of Proteobacteria (34%), particularly Alphaproteobacteria and Gammaproteobacteria, which support anaerobic conditions required by Desulfobacterota (under 10%). Despite their lower abundance, Desulfobacterota play a critical role in current generation, highlighting a symbiotic relationship between microbial species to maintain biosensor functionality and efficiency. The findings underscore the biosensor’s ability to provide real-time monitoring and early-warning detection, reducing reliance on manual sampling and analysis. This innovation offers a sustainable solution for wastewater treatment plants and environmental monitoring applications. The integration of mathematical modeling with microbial insights strengthens the biosensor’s capabilities, enabling precise signal interpretation and reliable operation. This work demonstrates the potential of combining microbial electrochemistry and automated cloud systems for scalable and impactful water quality monitoring solutions.

Keywords: Automated notification system; mathematical model; microbial electrochemical sensor; real-time detection; water quality monitoring

 

Rujukan

Adekunle, A., Vidales, A.G., Woodward, L. & Tartakovsky, B. 2021. Microbial fuel cell soft sensor for real-time toxicity detection and monitoring. Environmental Science and Pollution Research 28(10): 12792-12802. doi:10.1007/s11356-020-11245-6

Anjum, A., Mazari, S.A., Hashmi, Z., Jatoi, A.S. & Abro, R. 2021. A review of role of cathodes in the performance of microbial fuel cells. Journal of Electroanalytical Chemistry 899: 115673. doi:https://doi.org/10.1016/j.jelechem.2021.115673

Chu, N., Cai, J., Li, Z., Gao, Y., Liang, Q., Hao, W., Liu, P., Jiang, Y. & Zeng, R.J. 2022. Indicators of water biotoxicity obtained from turn-off microbial electrochemical sensors. Chemosphere 286: 131725. doi:https://doi.org/10.1016/j.chemosphere.2021.131725

Costa de Oliveira, M.A., D’Epifanio, A., Ohnuki, H. & Mecheri, B. 2020. Platinum group metal-free catalysts for oxygen reduction reaction: Applications in microbial fuel cells. Catalysts 10(5): 475. doi:10.3390/catal10050475

Du, L., Yan, Y., Li, T., Liu, H., Li, N. & Wang, X. 2022. Machine learning enables quantification of multiple toxicants with microbial electrochemical sensors. ACS ES&T Engineering 2(1): 92-100. doi:10.1021/acsestengg.1c00287

Guadarrama-Pérez, O, Guevara-Pérez, A.C., Guadarrama-Pérez, V.H., Bustos-Terrones, V., Hernández-Romano, J., Guillén-Garcés, R.A. & Moeller-Chávez, G.E. 2023. Bioelectricity production from the anodic inoculation of geobacter sulfurreducens DL-1 bacteria in constructed wetlands-microbial fuel cells. Bioelectrochemistry 154: 108537. doi:https://doi.org/10.1016/j.bioelechem.2023.108537

Kretzschmar, J., Böhme, P., Liebetrau, J., Mertig, M. & Harnisch, F. 2018. Microbial electrochemical sensors for anaerobic digestion process control - Performance of electroactive biofilms under real conditions. Chemical Engineering & Technology 41(4): 687-695. doi:https://doi.org/10.1002/ceat.201700539

Kumar, T., Naik, S. & Jujjavarappu, S.E. 2022. A critical review on early-warning electrochemical system on microbial fuel cell-based biosensor for on-site water quality monitoring. Chemosphere 291: 133098. doi:https://doi.org/10.1016/j.chemosphere.2021.133098

Kumar, S.S., Malyan, S.K., Basu, S. & Bishnoi, N.R. 2017. Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. Environmental Science and Pollution Research 24(19): 16019-16030. doi:10.1007/s11356-017-9112-4

Lim, S.S., Chong, P.S., Jong, B.C., Abu Bakar, M.H., Wan Daud, W.R., Md. Jahim, J. & Salehmin, M.N.I. 2022. Microbial fuel cell-based sensor for Enterobacter sp. KBH6958 activity monitoring during hydrogen production: The effects of pH and glucose concentration. Journal of Applied Electrochemistry 52(9): 1327-1342. doi:10.1007/s10800-022-01719-5

Lim, S.S., Fontmorin, J-M., Salehmin, M.N.I., Feng, Y., Scott, K. & Yu, E.H. 2022. Enhancing hydrogen production through anode fed-batch mode and controlled cell voltage in a microbial electrolysis cell fully catalysed by microorganisms. Chemosphere 288: 132548. doi:https://doi.org/10.1016/j.chemosphere.2021.132548

Medvedev, I., Kornaukhova, M., Galazis, C., Lóránt, B., Tardy, G.M., Losev, A. & Goryanin, I. 2023. Using AI and BES/MFC to decrease the prediction time of BOD(5) measurement. Environmental Monitoring and Assessment 195(9): 1018. doi:10.1007/s10661-023-11576-0

Muhammad Farhan Hil Me, Ang Wei Lun, Othman Ahmad Razi, Mohammad Abdul Wahab, Nasharuddin Ahmad Afiq Arshad, Mohd Aris Alijah, Khor Bee Chin & Lim Swee Su. 2024. Assessment of the microbial electrochemical sensor (SENTRYTM) as a potential wastewater quality monitoring tool for common pollutants found in Malaysia. Environmental Monitoring and Assessment 196(4): 366. doi:10.1007/s10661-024-12526-0

Niwa, M., Pan, Z. & Shimamoto, S. 2020. IoT sensor network powered by sediment microbial fuel cell. 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC). pp. 1-5. doi:10.1109/CCNC46108.2020.9045606

Nourbakhsh, F., Mohsennia, M. & Pazouki, M. 2020. Highly efficient cathode for the microbial fuel cell using LaXO3 (X = [Co, Mn, Co0.5Mn0.5]) perovskite nanoparticles as electrocatalysts. SN Applied Sciences 2(3): 391. doi:10.1007/s42452-020-2048-1

Perona-Vico, E., Feliu-Paradeda, L., Puig, S. & Bañeras, L. 2020. Bacteria coated cathodes as an in-situ hydrogen evolving platform for microbial electrosynthesis. Scientific Reports 10(1): 19852. doi:10.1038/s41598-020-76694-y

Schröder, U., Harnisch, F. & Angenent, L.T. 2015. Microbial electrochemistry and technology: Terminology and classification. Energy Environ. Sci. 8(2): 513-519. doi:10.1039/C4EE03359K

Spurr, M.W.A., Yu, E.H., Scott, K. & Head, I.M. 2020. A microbial fuel cell sensor for unambiguous measurement of organic loading and definitive identification of toxic influents. Environ. Sci.: Water Res. Technol. 6(3): 612-621. doi:10.1039/C9EW00849G

Tu, J.V. 1996. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology 49(11): 1225-1231. doi:https://doi.org/10.1016/S0895-4356(96)00002-9

Veerubhotla, R., Nag, S. & Das, D. 2019. Internet of Things temperature sensor powered by bacterial fuel cells on paper. Journal of Power Sources 438: 226947. doi:https://doi.org/10.1016/j.jpowsour.2019.226947

Wu, S-S., Hernández, M., Deng, Y-C., Han, C., Hong, X., Xu, J., Zhong, W-H. & Deng, H. 2019. The voltage signals of microbial fuel cell-based sensors positively correlated with methane emission flux in paddy fields of China. FEMS Microbiology Ecology 95(3): fiz018. doi:10.1093/femsec/fiz018

Yeo, R.Y.Z., Ang, W.L., Mahmoudi, E., Ismail, M., Abu Bakar, M.H., Ahmad Razi, O. & Lim, S.S. 2024. Enrichment of electrogenic microbes on surface-modified stainless steel 304L for rapid start-up of microbial electrochemical sensors. Materials Today: Proceedings https://doi.org/10.1016/j.matpr.2024.03.022

Yeo, R.Y.Z., Chin, B.H., Me, M.F.H., Chia, J.F., Pham, H.T., Othman, A.R., Mohammad, A.W., Ang, W.L. & Lim, S.S. 2023. Rapid surface modification of stainless steel 304L electrodes for microbial electrochemical sensor application. ACS Biomaterials Science & Engineering 9(11): 6034-6044. doi:10.1021/acsbiomaterials.3c00453

Zafar, Z., Ayaz, K., Nasir, M.H., Yousaf, S., Sharafat, I. & Ali, N. 2019. Electrochemical performance of biocathode microbial fuel cells using petroleum-contaminated soil and hot water spring. International Journal of Environmental Science and Technology 16(3): 1487-1500. doi:10.1007/s13762-018-1757-0

 

*Pengarang untuk surat-menyurat; email: limss@ukm.edu.my

 

 

 

 

 

 

 

 

 

           

sebelumnya