Sains Malaysiana 54(8)(2025): 1945-1956
http://doi.org/10.17576/jsm-2025-5408-06
Pembangunan Parameter Pengesanan Bahan
Pencemar dan Aplikasi Pemberitahuan melalui Kemudahan Internet Perkara (IoT) untuk
Sensor Elektrokimia Mikrob
(Development of Pollutant Detection Parameters
and Notification Applications through Internet of Things (IoT) Facilities for
Microbial Electrochemical Sensors)
YASHAWINI PHRIYA RAUICHANDRAN1, RYAN
YOW ZHONG YEO1, MUHAMMAD FARHAN HIL ME1, WEI LUN ANG1,2,
MIMI HANI ABU BAKAR1, KEE SHYUAN LOH1, MANAL ISMAIL1,2,
MOHD NUR IKHMAL SALEHMIN3, BEE CHIN KHOR4 & SWEE SU
LIM1,*
1Fuel Cell Institute, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Department of Chemical and Process Engineering, Faculty
of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
3National Nanotechnology Center (NNC), Ministry of
Science, Technology, and Innovation (MOSTI), Precint 1, 62000, Putrajaya,
Malaysia
4Indah Water Research Centre (IWRC), Indah Water
Konsortium Sdn. Bhd. Lot 3938, Jalan Chan Chin Mooi, Titiwangsa, 53200 Kuala
Lumpur, Malaysia
Diserahkan: 26 November 2024/Diterima: 23 Jun 2025
Abstrak
Penyelidikan
ini memfokuskan pada pembangunan dan pengesahan biosensor untuk pemantauan
kualiti air yang cekap melalui pengesanan automatik isyarat ketidakpatuhan.
Biosensor ini menggunakan sistem elektrokimia mikrob yang maju dengan sokongan
PicoLog Cloud, yang mengumpul data, menganalisis trend dan menghantar pemberitahuan
kepada pengguna melalui SMS atau emel sekiranya terdapat ketidakpatuhan. Model
matematik telah dibangunkan untuk meningkatkan ketepatan pengesanan dengan
mengenal pasti Kadar Perubahan (RoC) isyarat biosensor sebagai parameter utama.
Model ini menetapkan ambang ±30 mA/min yang telah disahkan melalui uji kaji
makmal terkawal. Sensitiviti biosensor ini dapat dibuktikan melalui pengesanan
output arus elektrik (50-300 µA) dengan penurunan ketara pada 0 µA pada
kepekatan 100 mg/L 4-nitrofenol. Sistem ini berjaya mengesan lonjakan
isyarat yang ketara akibat pengenalan medium baharu dan membezakannya daripada
gangguan persekitaran seperti gangguan elektrik atau gelembung udara
terperangkap. Analisis komuniti mikrob menunjukkan kelimpahan dominan Proteobacteria (34%), khususnya Alphaproteobacteria dan Gammaproteobacteria yang menyokong
keadaan anaerobik yang diperlukan oleh Desulfobacterota (kurang daripada 10%). Walaupun kelimpahannya lebih rendah, Desulfobacterota memainkan peranan
penting dalam penjanaan arus, menonjolkan hubungan simbiotik antara spesies
mikrob untuk mengekalkan fungsi dan kecekapan biosensor. Penemuan ini
menegaskan kemampuan biosensor untuk menyediakan pemantauan masa nyata dan
pengesanan awal, mengurangkan kebergantungan pada pensampelan dan analisis
manual. Inovasi ini menawarkan penyelesaian mampan untuk loji rawatan air sisa
dan aplikasi pemantauan alam sekitar. Integrasi model matematik dengan
pemahaman mikrob meningkatkan kemampuan biosensor, membolehkan interpretasi
isyarat yang tepat dan operasi yang boleh dipercayai. Kajian ini membuktikan
potensi gabungan elektrokimia mikrob dan sistem awan automatik untuk penyelesaian
pemantauan kualiti air yang berskala dan berimpak tinggi.
Kata kunci: Biosensor
elektrokimia mikrob; model matematik; pemantauan kualiti air; pengesanan masa
nyata; sistem pemberitahuan automatik
Abstract
This study
focuses on developing and validating a biosensor for efficient water quality
monitoring through automatic detection of non-compliance signals. The biosensor
employs an advanced microbial electrochemical system supported by PicoLog
Cloud, which collects data, analyzes trends, and sends notifications to users
via SMS or email in the event of non-compliance. A mathematical model was
developed to enhance detection accuracy, identifying the Rate of Change (RoC)
of the biosensor signal as a key parameter. The model defines a threshold of
±30 mA/min, validated through controlled laboratory experiments. The
biosensor’s sensitivity was confirmed by the detection of current outputs
(50-300 µA), with significant drop to 0 µA at 100 mg/L of 4-nitrophenol. The
system successfully detected significant signal spikes caused by the
introduction of new media and differentiated these from environmental noise,
such as electrical interference or trapped air bubbles. Microbial community
analysis showed a dominant abundance of Proteobacteria (34%), particularly Alphaproteobacteria and Gammaproteobacteria, which
support anaerobic conditions required by Desulfobacterota (under 10%). Despite their lower abundance, Desulfobacterota play a critical role in current generation, highlighting a symbiotic
relationship between microbial species to maintain biosensor functionality and
efficiency. The findings underscore the biosensor’s ability to provide
real-time monitoring and early-warning detection, reducing reliance on manual
sampling and analysis. This innovation offers a sustainable solution for
wastewater treatment plants and environmental monitoring applications. The
integration of mathematical modeling with microbial insights strengthens the
biosensor’s capabilities, enabling precise signal interpretation and reliable
operation. This work demonstrates the potential of combining microbial
electrochemistry and automated cloud systems for scalable and impactful water
quality monitoring solutions.
Keywords: Automated notification system; mathematical
model; microbial electrochemical sensor; real-time detection; water quality
monitoring
Rujukan
Adekunle, A., Vidales, A.G., Woodward, L. & Tartakovsky, B.
2021. Microbial fuel cell soft sensor for real-time toxicity detection and monitoring. Environmental Science and Pollution Research 28(10): 12792-12802.
doi:10.1007/s11356-020-11245-6
Anjum, A., Mazari, S.A., Hashmi, Z., Jatoi, A.S.
& Abro, R. 2021. A review of role of cathodes in the performance of
microbial fuel cells. Journal of Electroanalytical Chemistry 899:
115673. doi:https://doi.org/10.1016/j.jelechem.2021.115673
Chu, N., Cai, J., Li, Z., Gao, Y., Liang, Q., Hao,
W., Liu, P., Jiang, Y. & Zeng, R.J. 2022. Indicators of water biotoxicity
obtained from turn-off microbial electrochemical sensors. Chemosphere 286: 131725. doi:https://doi.org/10.1016/j.chemosphere.2021.131725
Costa de Oliveira, M.A., D’Epifanio, A., Ohnuki, H.
& Mecheri, B. 2020. Platinum group metal-free catalysts for oxygen
reduction reaction: Applications in microbial fuel cells. Catalysts 10(5): 475. doi:10.3390/catal10050475
Du, L., Yan, Y., Li, T., Liu, H., Li, N. &
Wang, X. 2022. Machine learning enables quantification of multiple toxicants
with microbial electrochemical sensors. ACS ES&T Engineering 2(1):
92-100. doi:10.1021/acsestengg.1c00287
Guadarrama-Pérez, O, Guevara-Pérez, A.C., Guadarrama-Pérez,
V.H., Bustos-Terrones, V., Hernández-Romano, J., Guillén-Garcés, R.A. &
Moeller-Chávez, G.E. 2023. Bioelectricity production from the anodic
inoculation of geobacter sulfurreducens DL-1 bacteria in constructed
wetlands-microbial fuel cells. Bioelectrochemistry 154: 108537.
doi:https://doi.org/10.1016/j.bioelechem.2023.108537
Kretzschmar, J., Böhme, P., Liebetrau, J., Mertig,
M. & Harnisch, F. 2018. Microbial electrochemical sensors for anaerobic
digestion process control - Performance of electroactive biofilms
under real conditions. Chemical Engineering & Technology 41(4):
687-695. doi:https://doi.org/10.1002/ceat.201700539
Kumar, T., Naik, S. & Jujjavarappu, S.E. 2022.
A critical review on early-warning electrochemical system on microbial fuel
cell-based biosensor for on-site water quality monitoring. Chemosphere 291: 133098. doi:https://doi.org/10.1016/j.chemosphere.2021.133098
Kumar, S.S., Malyan, S.K., Basu, S. & Bishnoi,
N.R. 2017. Syntrophic association and performance of Clostridium,
Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts
for bioelectricity generation in dual chamber microbial fuel cell. Environmental
Science and Pollution Research 24(19): 16019-16030.
doi:10.1007/s11356-017-9112-4
Lim, S.S., Chong, P.S., Jong, B.C., Abu Bakar, M.H.,
Wan Daud, W.R., Md. Jahim, J. & Salehmin, M.N.I. 2022. Microbial fuel
cell-based sensor for Enterobacter sp. KBH6958 activity monitoring
during hydrogen production: The effects of pH and glucose concentration. Journal
of Applied Electrochemistry 52(9): 1327-1342.
doi:10.1007/s10800-022-01719-5
Lim, S.S., Fontmorin, J-M., Salehmin, M.N.I., Feng,
Y., Scott, K. & Yu, E.H. 2022. Enhancing hydrogen production through anode
fed-batch mode and controlled cell voltage in a microbial electrolysis cell
fully catalysed by microorganisms. Chemosphere 288: 132548.
doi:https://doi.org/10.1016/j.chemosphere.2021.132548
Medvedev, I., Kornaukhova, M., Galazis, C., Lóránt,
B., Tardy, G.M., Losev, A. & Goryanin, I. 2023. Using AI and BES/MFC to decrease
the prediction time of BOD(5) measurement. Environmental Monitoring and Assessment 195(9): 1018. doi:10.1007/s10661-023-11576-0
Muhammad Farhan Hil Me, Ang Wei Lun, Othman Ahmad
Razi, Mohammad Abdul Wahab, Nasharuddin Ahmad Afiq Arshad, Mohd Aris Alijah,
Khor Bee Chin & Lim Swee Su. 2024. Assessment of the microbial
electrochemical sensor (SENTRYTM) as a potential wastewater quality
monitoring tool for common pollutants found in Malaysia. Environmental
Monitoring and Assessment 196(4): 366. doi:10.1007/s10661-024-12526-0
Niwa, M., Pan, Z. & Shimamoto, S. 2020. IoT sensor
network powered by sediment microbial fuel cell. 2020 IEEE 17th Annual
Consumer Communications & Networking Conference (CCNC). pp. 1-5.
doi:10.1109/CCNC46108.2020.9045606
Nourbakhsh, F., Mohsennia, M. & Pazouki, M. 2020.
Highly efficient cathode for the microbial fuel cell using LaXO3 (X = [Co, Mn, Co0.5Mn0.5]) perovskite
nanoparticles as electrocatalysts. SN Applied Sciences 2(3): 391.
doi:10.1007/s42452-020-2048-1
Perona-Vico, E., Feliu-Paradeda, L., Puig, S.
& Bañeras, L. 2020. Bacteria coated cathodes as an in-situ hydrogen
evolving platform for microbial electrosynthesis. Scientific Reports 10(1): 19852. doi:10.1038/s41598-020-76694-y
Schröder, U., Harnisch, F. & Angenent, L.T. 2015.
Microbial electrochemistry and technology: Terminology and classification. Energy
Environ. Sci. 8(2): 513-519. doi:10.1039/C4EE03359K
Spurr, M.W.A., Yu, E.H., Scott, K. & Head, I.M.
2020. A microbial fuel cell sensor for unambiguous measurement of organic
loading and definitive identification of toxic influents. Environ. Sci.:
Water Res. Technol. 6(3): 612-621. doi:10.1039/C9EW00849G
Tu, J.V. 1996. Advantages and disadvantages of
using artificial neural networks versus logistic regression for predicting
medical outcomes. Journal of Clinical Epidemiology 49(11): 1225-1231.
doi:https://doi.org/10.1016/S0895-4356(96)00002-9
Veerubhotla, R., Nag, S. & Das, D. 2019.
Internet of Things temperature sensor powered by bacterial fuel cells on paper. Journal of Power Sources 438: 226947.
doi:https://doi.org/10.1016/j.jpowsour.2019.226947
Wu, S-S., Hernández, M., Deng, Y-C., Han, C., Hong,
X., Xu, J., Zhong, W-H. & Deng, H. 2019. The voltage signals of microbial
fuel cell-based sensors positively correlated with methane emission flux in
paddy fields of China. FEMS Microbiology Ecology 95(3): fiz018.
doi:10.1093/femsec/fiz018
Yeo, R.Y.Z., Ang, W.L., Mahmoudi, E., Ismail, M., Abu
Bakar, M.H., Ahmad Razi, O. & Lim, S.S. 2024. Enrichment of electrogenic
microbes on surface-modified stainless steel 304L for rapid start-up of
microbial electrochemical sensors. Materials Today: Proceedings https://doi.org/10.1016/j.matpr.2024.03.022
Yeo, R.Y.Z., Chin, B.H., Me, M.F.H., Chia, J.F., Pham,
H.T., Othman, A.R., Mohammad, A.W., Ang, W.L. & Lim, S.S. 2023. Rapid surface
modification of stainless steel 304L electrodes for microbial electrochemical
sensor application. ACS Biomaterials Science & Engineering 9(11):
6034-6044. doi:10.1021/acsbiomaterials.3c00453
Zafar, Z., Ayaz, K., Nasir, M.H., Yousaf, S., Sharafat,
I. & Ali, N. 2019. Electrochemical performance of biocathode microbial fuel
cells using petroleum-contaminated soil and hot water spring. International
Journal of Environmental Science and Technology 16(3): 1487-1500.
doi:10.1007/s13762-018-1757-0
*Pengarang untuk surat-menyurat; email: limss@ukm.edu.my